

Implementation of Zero-noise Extrapolation in 28Si/SiGe Spin Qubits

Jaewon Jung¹, Hanseo Sohn¹, Jaemin Park¹, Hyeongyu Jang¹, Lucas E. A. Stehouwer², Davide Degli Esposti², Giordano Scappucci², and Dohun Kim^{1*}

¹Department of Physics and Astronomy, Seoul National University, Korea, ²QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Netherlands

Presenter: Jaewon Jung

0. Contents

- 1. Introduction
	- 1.1 Intro to 28Si/SiGe Spin Qubits
	- 1.2 Gate operation and measurement of single spin qubit

2. Method

2.1 Zero-noise extrapolation 2.2 Readout error mitigation 2.2 Randomized benchmarking 2.3 Quantum state tomography

3. Results

3.1 Randomized benchmarking 3.2 Quantum state tomography

4. Summary

5. Reference

1.1 Intro to 28Si/SiGe Spin Qubits

Cobalt micromagnet for manipulating spins

2

1.2 Gate operation and measurement of single spin qubit

1.2 Gate operation and measurement of single spin qubit

2.1 Zero-noise extrapolation: Principle

Measure the noise-amplified results and extrapolate them to zero-noise limit

 $H(t) = \sum$

An example of a first-order Richardson extrapolation (E^* : zero-noise value, $E(c_1\lambda)$, $E(c_2\lambda)$: noise-amplified value) **Time dependent drive Hamiltonian**

 $J_{\alpha}(t)P_{\alpha}$

 α

 \boldsymbol{n}

$$
E_H(\lambda) = E^* + \sum_{k=1}^n a_k \lambda^k + O(\lambda^{n+1})
$$

 $E_H(\lambda)$: expectation value for a state evolved by $H(t)$ ($λ$: small noise parameter)

> **An improved approximation by Richardson extrapolation method**

 $J_\alpha(t)$: strength of interaction

 P_{α} : N-qubit Pauli operator

5 \widehat{E}^n_H $\binom{n}{H}(\lambda) = \sum_{i=1}^{n}$ $i=0$ $\gamma_i \widehat E_H(c_i\lambda) \;\; \frac{n^{th}$ -order Richardson
extranolation estimate \sum $i=0$ \boldsymbol{n} ${\gamma}_i = 0$, \quad \quad \quad \quad \quad \quad $i=0$ \boldsymbol{n} For a chosen set of c_i $\sum \gamma_i = 0$, $\sum \gamma_i c_i^k = 0$ and the coefficients ${\gamma}_i$ **extrapolation estimate**

2.1 Zero-noise extrapolation: Optimization

By optimizing the noise stretch factor and the number of shots per experiment, we can obtain more accurate and stable mitigated result

$$
\widehat{E}^n_H(\lambda) = \sum_{i=0}^n \gamma_i \widehat{E}_H(c_i \lambda)
$$

 n^{th} -order Richardson **extrapolation estimate**

$$
Bias\left[\hat{E}_H^n(\lambda)\right] = (-1)^n E_{\lambda_0}^{(n+1)}(\xi) \frac{C_n}{(n+1)!}
$$

$$
Bias\big[\widehat{E}_{H}^{n}(\lambda)\big] = E_{H}(\lambda) - E^{*}, \ C_{n} = \prod_{j=0}^{n} c_{j}
$$

By using adequate size of noise stretch factor, we can reduce the bias of mitigated result

Michael Krebsbach, Björn Trauzettel, and Alessio Calzona Phys. Rev. A **106**, 062436 (2022)

$$
Var(\widehat{E}_{H}^{n}(\lambda)) = \sum_{j=0}^{n} \gamma_{j}^{2} \frac{\sigma^{2}}{N_{j}}
$$

$$
\gamma_j = \prod_{k \neq j} \frac{c_k}{c_k - c_j}
$$

By using adequate number of shots per noise parameter, we can reduce the variance of mitigated result

Zero-noise extrapolation: Noise amplification

- **1. Digital noise scaling: Unitary folding**
- **1. Global folding: Folding the whole circuit for N times**

^U ^U (**^U† ^U**) **N**

U: Unitary gate representing the whole quantum circuit

2. Local folding: Folding the each gate for N times

T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, Denver, CO, 2020), p. 306.

 U_1 $\begin{array}{|c|c|c|}\n\hline\n\mathsf{U}_2\n\end{array}$ **N ^U¹** (**^U†** $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ **† N U**₂

U: Unitary gate representing each single gate

2. Analog noise scaling: Pulse stretching

$$
\underset{c_0}{\text{MMM}} \quad \boxed{\text{M}} \quad \longrightarrow \quad \underset{c_1}{\text{MMM}} \quad \boxed{\text{M}}
$$

Stretching the pulse for a desired stretch factor from c_0 **to** c_1

2.1 Zero-noise extrapolation: Noise spectrum

In ideal, noise should be invariant under time-rescaling.

 $\mathbf b$

Kevin Schultz, Ryan LaRose, Andrea Mari, Gregory Quiroz, Nathan Shammah, B. David Clader, and William J. Zeng Phys. Rev. A **106**, 052406 (2022)

For white noise, pulse-stretching method can be used to scale the noise ideally.

For colored noise $(1/f, 1/f^2)$, global folding method **performs the best from the simulation result.**

For silicon spin qubit, $1/f$ noise is a **dominant noise source**

Yoneda, J., Takeda, K., Otsuka, T. *et al.* A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. *Nature Nanotech* **13**, 102–106 (2018).

2.2 Readout error mitigation

Passive readout error mitigation: Mitigating local readout error for single qubit

Initialize

$$
|0\rangle - \frac{1}{\mathbf{X}} - \frac{1}{\mathbf{A}} \longrightarrow P_1
$$

$$
|0\rangle - \frac{1}{\mathbf{X}} - \frac{1}{\mathbf{A}} \longrightarrow P_2
$$

$$
\longrightarrow \hat{C} = \begin{pmatrix} F_0 & 1 - F_1 \\ 1 - F_0 & F_1 \end{pmatrix}
$$

 \hat{C} : response matrix $F_0(F_1)$: fidelity of spin-down (up)

$$
P_1 = F_1(1 - \alpha) + (1 - F_0)\alpha
$$

$$
\frac{P_2}{P_{\pi}} = F_1\alpha + (1 - F_0)(1 - \alpha)
$$

 $P_1(P_2)$: spin-up probability when prepared 0 (1) state P_{π} : expected probability of spin-up considering the decoherence

$$
\longrightarrow P^* = \hat{C}^{-1}P^M
$$

 P^* : mitigated probabilities P^M : measured probabilities

2.3 Randomized benchmarking

The benchmarking protocol which estimates average gate fidelity

The method to measure the fidelity of a quantum state

$$
\widehat{\rho} = \frac{1}{2} \sum_{i=0}^{3} S_i \widehat{\sigma}_i
$$

Experiment for measuring stokes parameter

 $\hat{\rho}$: density matrix of a quantum state $\widehat{\sigma_{i}}$: pauli matrix Stokes parameter: $\{S_0, S_1, S_2, S_3\}$ $S_i \equiv Tr(\hat{\sigma_i \hat{\rho}}) = 2P_{\vert \psi \rangle} - 1$ for single qubit

$$
F = \langle \psi_{theory} | \rho_{exp} | \psi_{theory} \rangle
$$

 $F:$ fidelity of a quantum state

Altepeter, J., Jefrey, E. & Kwiat, P. Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

3.1 Results: Randomized benchmarking

Under conditions of time-correlated noise, Global folding outperforms than Local folding.

Pulse stretching performs well but reveals instability. Indicating the presence of time-correlated noise.

Richardson extrapolation Linear extrapolation

3.2 Results: Quantum state tomography

First implementation of zero-noise extrapolation (ZNE) on semiconductor quantum dot

From demonstration of randomized benchmarking,

- **1. Global folding method outperforms local folding and pulse stretching method.**
- **2. Unitary folding method is a lot more stable than pulse stretching method.**

From demonstration of quantum state tomography,

- **1. By using ZNE and readout error mitigation, we can significantly increase fidelity. (From 0.758 to 0.985, 0.822 to 0.996)**
- **2. ZNE is a reliable and relatively simple for mitigating short depth quantum circuit.**

5. References

Slides

Slide 2: Intro to 28Si/SiGe Spin Qubits

Slide 3: Gate operation and measurement of single spin qubit

Slide 4: Gate operation and measurement of single spin qubit

Slide 5: Zero-noise extrapolation: Principle

Slide 6: Zero-noise extrapolation: Optimization

Slide 7: Zero-noise extrapolation: Noise amplification

Slide 8: Zero-noise extrapolation: Noise spectrum

Slide 9: Readout error mitigation

Slide 10: Randomized benchmarking theory

Slide 11: Quantum state tomography theory

Slide 12: Results: Randomized benchmarking

Slide 13: Results: Quantum state tomography

Slide 12: Summary

Thanks for listening to my presentation!

References

[1] Kandala, A., Temme, K., Córcoles, A.D. *et al.* Error mitigation extends the computational reach of a noisy quantum processor. *Nature* **567**, 491–495 (2019). [2] E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via randomized benchmarking, Phys. Rev. A 85, 042311 (2012). [3] Altepeter, J., Jefrey, E. & Kwiat, P. Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005). [4] Loss, Daniel, and David P. DiVincenzo., Physical Review A 57, no. 1, 120-26 (1998) [5] Hicks, R., Kobrin, B., Bauer, C. W. & Nachman, B. et al., Phys. Rev. A 105, 012419 (2022). [6] Jehyun Kim, Jonginn Yun, Wonjin Jang, Hyeongyu Jang, Jaemin Park, Younguk Song, Min-Kyun Cho, Sangwoo Sim, Hanseo Sohn, Hwanchul Jung, Vladimir Umansky, and Dohun Kim., Phys. Rev. Lett. **129**, 040501 [7] T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, Denver, CO, 2020), p. 306.