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Intro to 28Si/SiGe Spin Qubits1.1
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Gate operation and measurement of single spin qubit1.2
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Gate operation and measurement of single spin qubit1.2
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Impedance changes due to the change 
of 𝑹𝒅𝒐𝒕 from electron’s escape allow us 

to measure the single spin state
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Jehyun Kim, Jonginn Yun, Wonjin Jang, Hyeongyu Jang, 

Jaemin Park, Younguk Song, Min-Kyun Cho, Sangwoo Sim, 
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Measure the noise-amplified results and extrapolate them to zero-noise limit

Zero-noise extrapolation: Principle2.1
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By optimizing the noise stretch factor and the number of shots per 
experiment, we can obtain more accurate and stable mitigated result

Zero-noise extrapolation: Optimization2.1
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1. Digital noise scaling: Unitary folding 

Zero-noise extrapolation: Noise amplification2.1
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2. Analog noise scaling: Pulse stretching 

1. Global folding: Folding the whole circuit for N times

U U U U†( )
N

U: Unitary gate representing the whole quantum circuit

2. Local folding: Folding the each gate for N times

U U
21

N

U U†( )1U1 1 ( )U U†
N

U
2 2 2

U: Unitary gate representing each single gate

Stretching the pulse for a desired 
stretch factor from 𝒄𝟎 to 𝒄𝟏

𝒄𝟎 𝒄𝟏

T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, in 2020 

IEEE International Conference on Quantum Computing and Engineering 

(QCE) (IEEE, Denver, CO, 2020), p. 306.



In ideal, noise should be invariant under time-rescaling.

Zero-noise extrapolation: Noise spectrum2.1
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For white noise, pulse-stretching method can be 

used to scale the noise ideally.

For colored noise (𝟏/𝒇, 𝟏/𝒇𝟐), global folding method 

performs the best from the simulation result. 

Kevin Schultz, Ryan LaRose, Andrea Mari, Gregory Quiroz, Nathan 

Shammah, B. David Clader, and William J. Zeng

Phys. Rev. A 106, 052406 (2022)

λ: noise parameter

Δ(λ): relative noise-scaling error

Yoneda, J., Takeda, K., Otsuka, T. et 

al. A quantum-dot spin qubit with 

coherence limited by charge noise and 

fidelity higher than 99.9%. Nature 

Nanotech 13, 102–106 (2018). 

For silicon spin qubit, 

𝟏/𝒇 noise is a 

dominant noise source



Passive readout error mitigation: Mitigating local readout error for single qubit

Readout error mitigation2.2
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Randomized benchmarking2.3
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The benchmarking protocol which estimates average gate fidelity 
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E. Magesan, J. M. Gambetta, and J. Emerson, 
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benchmarking, Phys. Rev. A 85, 042311 (2012).



Quantum state tomography2.4
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Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).



Results: Randomized benchmarking3.1
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Under conditions of time-correlated noise,

Global folding outperforms than Local folding.

Richardson extrapolation Linear extrapolation

Pulse stretching performs well 
but reveals instability. 
Indicating the presence of 
time-correlated noise.



Results: Quantum state tomography3.2
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Summary4.
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First implementation of zero-noise extrapolation (ZNE) on semiconductor quantum dot 

From demonstration of randomized benchmarking, 

1. Global folding method outperforms local folding and pulse stretching method.

2. Unitary folding method is a lot more stable than pulse stretching method.

From demonstration of quantum state tomography,

1. By using ZNE and readout error mitigation, we can significantly increase fidelity.

(From 0.758 to 0.985, 0.822 to 0.996)

2. ZNE is a reliable and relatively simple for mitigating short depth quantum circuit.
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