

KIAT **Scalable Benchmarking Protocol for Mid-circuit Measurements**

Jaewon Jung, Jinwoo Yu, Daniel Donghyon Ohm, Minwoo Kim, JM Lee, and Eunjong Kim*

Department of Physics and Astronomy, Seoul National University, Seoul 08858, Korea

*E-mail: eunjongkim@snu.ac.kr

- Mid-circuit measurements (MCMs) are core building blocks for fault-tolerant quantum computing. Randomized benchmarking approach [3]

- Randomized benchmarking has the advantage of efficiency and scalable average fidelity measurements, in contrast to tomography based methods which provide detailed but non-scalable characterizations. [1-3].
- An efficient and scalable benchmarking protocol capable of characterizing and measuring the error rates of MCMs will serve as a good testbed for calibration and optimization of MCMs.

Randomized benchmarking with interleaved MCMs layers

Scheme 1

Effectively Measurement-induced control error free

- MCMs and single qubit gates are not performed at the same time which effectively prevents measurement-induced control errors from qubits.

IBM backend results

- On 127-qubits systems, 4-qubits are used. Number of shots = 10000
 - **1. ibm_brisbane:** qubits = [63, 64, 65, 66]
- ZZ min w/ MCMs ZZ max w/ MCMs ZZ min w/o MCMs ZZ max w/o MCMs

for Advancement of Technology

한국산업기술진흥원

IBM Quantum

Scheme 2

Measurement-induced control error added

- Mixing the gate sequences enables single qubit gates and MCMs to be overlapped so that measurement-induced control errors can be added.
- By adjusting the rate of qubit reversal to 0 or 1, state-dependent errors such as the residual ZZ interaction can be tuned.
- MCM errors are extracted using interleaved randomized benchmarking.

- Controlling the overlap between MCMs and single qubit gates is crucial.

Error signatures of MCMs [3]

Measurement induced control error

Stark shift error

- $\widehat{U}_{\mathrm{Stark}} = e^{-i\phi\widehat{\sigma}_{\mathrm{z}}} \chi$: dispersive shift. \bar{n} : mean photon number in readout resonator. $\phi = 2\chi \bar{n}T$ *T*: measurement duration.
- η : depolarization probability

Cross-measurement error

 $\widehat{K}_0 = \sqrt{p_{\rm m}} |0\rangle \langle 0|$ $p_{\rm m}$: cross-measurement $\widehat{K}_1 = \sqrt{p_{\rm m}} |1\rangle\langle 1|$ probability

 $\widehat{K}_2 = \sqrt{1 - p_{\rm m}}\widehat{\mathbf{I}}$

$\varepsilon_{\rm dep}(\rho) = (1 - \eta)\rho + \eta \frac{1}{2}$

Residual ZZ interaction

Local measurement error

Non-QND error

 $\widehat{U}_{\rm ZZ} = e^{-i\widehat{H}_{\rm ZZ}T}$

 $\widehat{H}_{ZZ} = \nu |e\rangle \langle e|_{\text{measured}} \otimes \widehat{\sigma}_{z}^{\text{neighbor}}$

 ν : coupling rate

0.0698 (0.00863)

0.0494 (0.0084)

MCMs duration: **MCMs** parameters

720 (720) ns **Depopulating time after MCMs: 1640 (340)** ns

Conclusion

- Randomized benchmarking based schemes ensure scalability and efficient measurement of MCM errors.
- Adjusting the gate and MCM timing enables characterization of the error signatures of MCMs.
- Demonstration of benchmarking protocol both on a noise simulator and superconducting qubit systems-ibm_brisbane and ibm_osaka.

References

[1] K. Rudinger et al., Phys. Rev. Appl. 17, 014014 (2022). [2] J. P. Gaebler et al., Phys. Rev. A 104, 062440 (2021). [3] L. C. G. Govia et al., New Journal of Physics 25, 123016 (2023) (2020).

Acknowledgement

This work was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(Ministry of Education)(P0025681-G02P22450002201-10054408, "Semiconductor"-Specialized University). This research [4] Nielsen, Erik, et al., Quantum science and Technology 5.4, 044002 was supported by 'Quantum Information Science R&D Ecosystem Creation' through the National Research Foundation of Korea(NRF) funded by the Korean government (Ministry of Science and ICT(MSIT))(No. 2020M3H3A1110365).