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Motivation

Noisy simulation results

- Mid-circuit measurements (MCMSs) are core building blocks for fault-tolerant

, Cross-measurement probability
quantum computing.
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- Randomized benchmarking has the advantage of efficiency and scalable 00z 004~ 006 008 010 00 02 04 06 08 10
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average fidelity measurements, in contrast to tomography based methods
which provide detailed but non-scalable characterizations. [1-3]. ZZ coupling error - Circuit generation was done using
- An efficient and scalable benchmarking protocol capable of characterizing T m zzmax | PYGSTI [4].
and measuring the error rates of MCMs will serve as a good testbed for 041 & ¢ zzmin 1| - Noisy simulations were done with
calibration and optimization of MCMs. 0os{l | Qiskit density matrix simulator with 4-
o [l E ~ | qubits.
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- MCM(1qg gate) duration: 720(60) ns
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Single layer Iterate for d depths state.

Terminal measurements

IBM backend results

On 127-qubits systems, 4-qubits are used. @ ZZ min w/ MCMs
Number of shots = 10000 : ZZ max w/ MCMs
O

ZZ min w/o MCMs
1. ibm_brisbane: qubits = [63, 64, 65, 66]

ZZ max w/o MCMs

100 100 Scheme 2
80 - 80 -
0:%, 60 — 0:%, 60 =
- MCMs and single qubit gates are not performed at the same time which g TMCMs S - 'MCMs
effectively prevents measurement-induced control errors from qubits. b 20+ 0.014+0.005 o 0.006+0.005
--------------------------------------------------------------- 04 0.023+0.003 : 01 0. 021-—0 004
i Bench k Depth+1 Bench k Depth+1
Measurement-induced control error added Srenmart eph SronmArt Zep
lterate for d depths 2. Ibm_osaka: qubits = [63, 64, 65, 66]

80

S 2 60-
c 60+ -
O O 40 -
IS IS
N 40 - .
3 'MCMs S
o 20 - al 0 -
0.059-
01 0.072- 20 - O 074--0 011
: T — T T ]
10° 10' 10° 10'
Benchmark Depth+1 Benchmark Depth+1

Calibration data

- Mixing the gate sequences enables single qubit gates and MCMs to be Brisbane (Osaka) Readout assignment error Prob. measO prepl
overlapped so that measurement-induced control errors can be added.

e | g[63] 0.0060 (0.0097) 0.0048 (0.0106)
- By adjusting the rate of qubit reversal to O or 1, state-dependent errors such 64 0 0063 (0 0086
as the residual ZZ interaction can be tuned. qLo=. ' (0. ) 0.0080 (0.0102)
- MCM errors are extracted using interleaved randomized benchmarking. q[65] 0.0166 (0.0113) 0.0200 (0.0132)
- Controlling the overlap between MCMs and single qubit gates is crucial. q[66] 0.0698 (0.00863) 0.0494 (0.0084)
MCMs duration: 720 (720) ns
| MCMs parameters . .
Error signatures of MCMs (3] P Depopulating time after MCMs: 1640 (340) ns
Measurement induced control error Local measurement error
Stark shift error Non-QND error Conclusion
Ocony = e~i#02 X dispersive shift. eqen(P) = (1 —np + ,71 - Randomized benchmarking based schemes ensure scalability and efficient
n. mean photon number 2 measurement of MCM errors.
¢ = 2xnl T In readout restogatotr_. 7: depolarization probability - Adjusting the gate and MCM timing enables characterization of the error
. measurement duration. signatures of MCMs.
Cross-measurement error Residual ZZ interaction - Demonstration of benchmarking protocol both on a noise simulator and
0)(0 superconducting qubit systems-ibm_brisbane and ibm_osaka.
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