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Introduction 

Classical Chutes & Ladders and the Markov Approach 

The board game Chutes and Ladders (or Snakes and Ladders) offers an excellent way to explore 

the concepts of chance and probability. The seemingly simple game can be modeled using 

Markov chains, which provide a mathematical lens with which to view its structure and flow. A fun 

blog article which this discussion is based on can be found here. 

 

Chutes and Ladders is a “memoryless” game, meaning the outcome of each turn is independent 

of the previous ones. On each turn, rolling a six-sided die determines your movement - you have 

an equal probability of landing on any one of six squares ahead of you. If you’re lucky, you’ll land 

at the base of a ladder and move up quickly; if you’re not, you might end up at the top of a chute 

and slide down, but these events are completely independent of where you’ve been before. 

 

This memoryless nature is the fundamental principle of a Markov Process, a sequence of 

probabilistic transitions from one state to another. When modeling Chutes and Ladders, we treat 

each square on the board as a “state” and transition between these states based on the roll of 

the die. This can be represented mathematically as a transition matrix, where each row-column 

intersection gives the probability of moving from one state to another. Statistics derived from the 

transition matrix reveal that the shortest game lasts seven moves, occurring about once in 660 

games. On average, games take 39 turns, but due to skewed probability distribution, most games 

finish in fewer than 32 moves, with 22 being the most common number of moves. 

 

Analyzing and understanding these probabilistic aspects of the classical game of Chutes and 

Ladders provides an excellent primer for considering its quantum counterpart. It helps in shaping 

our mindset, as we start thinking about probability distributions, state transitions, and most 

importantly, the concept of a “quantum superposition”, which will replace our classical die with a 

quantum version. As we move forward, we'll see that Quantum Chutes and Ladders is not just a 

game, but a fascinating playground for exploring and experiencing the principles of quantum 

mechanics. 

Quantum Walks: The Quantum Analog of Markov Processes 

The quantum extension of Markov processes are known as quantum walks. Quantum walks serve 

as a cornerstone for modeling the behavior of various quantum systems and have applications in 

algorithmic search problems. Unlike their classical counterparts, quantum walks operate in a 

reversible, unitary fashion. This essential difference arises due to the intrinsic nature of quantum 

mechanics, where transitions between states are governed by unitary operators rather than 

stochastic matrices. 

https://en.wikipedia.org/wiki/Snakes_and_ladders
https://jakevdp.github.io/blog/2017/12/18/simulating-chutes-and-ladders/
http://www.datagenetics.com/blog/november12011/
https://en.wikipedia.org/wiki/Markov_chain
https://jakevdp.github.io/blog/2017/12/18/simulating-chutes-and-ladders/
https://en.wikipedia.org/wiki/Quantum_walk#Discrete_time
https://quantumcomputing.stackexchange.com/questions/12657/are-quantum-operations-reversible


 

More specifically, quantum walks differ from Markov processes in crucial ways: they employ 

unitary operators instead of transition matrices, introducing reversibility absent in classical 

systems. These unitary operators form a “quantum transition matrix” that governs state changes. 

Additionally, quantum walks utilize quantum superposition, allowing multiple board positions to be 

explored simultaneously, contrasting with the single-state nature of classical systems. This leads 

to parallel exploration of the state space, making quantum walks distinct and more complex than 

Markov processes. 

 

While we explore quantum walks in the context of a children’s board game, the reality is that 

quantum walks are important for a number of potentially useful quantum algorithms. Quantum 

walks have been found to be the underlying structure in many quantum algorithms, including 

search algorithms like Grover's algorithm. These algorithms leverage the parallelism introduced 

by quantum superposition to search through unsorted databases more efficiently than any 

classical algorithm could. In this light, the shift from Chutes and Ladders to Quantum Chutes and 

Ladders serves as an intriguing case study. It transitions us from classical probability and Markov 

processes into the realm of quantum mechanics, unitary operations, and quantum walks. This 

quantum version opens a pathway to understand more complex quantum phenomena and 

algorithms. 

 

IonQ Quantum Challenge #1 

The classic game of Chutes and Ladders (or Snakes and Ladders) is a common children’s board 

game. The game can be effectively modeled using Markov Chains, capturing its “memoryless” 

essence. Today, we’re going to take this simple game and give it a quantum twist. Welcome to 

Quantum Chutes and Ladders! 

 

In this challenge, you’ll transform this classical game into a quantum one by replacing the standard 

six-sided die with a fair quantum “coin”, and by constructing a quantum transition matrix to model 

the board as a discrete quantum random walk. This task will be graded across different levels of 

difficulty, from introductory quantum concepts to advanced quantum research. 

Beginner Track 

Task 1: Construct a fair “quantum coin”. What operator does this correspond to? What would a 

“four-sided” quantum coin look like? Give an implementation using your quantum SDK of choice? 

How can you verify if your two- and four-sided “quantum coin” is fair? 

 

Task 2: Let’s start with a simplified board with no Chutes or Ladders:  

 

 

https://en.wikipedia.org/wiki/Snakes_and_ladders
https://jakevdp.github.io/blog/2017/12/18/simulating-chutes-and-ladders/
http://www.datagenetics.com/blog/november12011/
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Quantum_walk#Discrete_time


 

Figure 1. Simplified board. 

 
 

Figure 2. Simplified board and some game dynamics, 
moving the state one square at a time from 0 to 1 to 2… 

 

The dynamics here are that you start at zero, and the game ends when you land on square 15. 

How would you represent the location on the board (4x4 grid, 16 squares) as quantum states?  

 

Task 3: Now devise a quantum circuit to represent the game dynamics. That is, implement the 

quantum walk. You’ll need to simulate with a quantum coin (you can use the two-sided coin) in 

conjunction with a “shift operator” which moves the state forward depending on the outcome of 

the quantum coin. Since you aren’t measuring it, the board will now be in a superposition. 

Implement a program that evolves the gameplay for N steps of the game using your quantum 

SDK of choice.  

 

Hint 1: For the dice roll and moving spaces, take some inspiration from quantum walks and the 

“shift” operators (see Sec 4.2.1 of this paper). For example, left- and right- shift operators, which 

increment a square by one (or decrement by one) can be given as multi-controlled Toffolis: 

 

 
Figure 3. Shift operators (quantum “transition matrices”) and their corresponding circuits.  

Schematic taken from https://arxiv.org/abs/2203.10236. 

 

You can consider a unidirectional case, using either just the left or right operator. Note that 

because the gates mimic a cyclic graph, if you “land” on the final state and “roll again” it is possible 

to land back at the original state, i.e. from square 15 to square 0. 

https://arxiv.org/abs/1306.1807
https://arxiv.org/abs/1306.1807
https://arxiv.org/abs/2203.10236
https://arxiv.org/abs/2203.10236


 

Hint 2: You will also need to consider an ancilla qubit to represent the state of the quantum coin. 

The wikipedia page for discrete time quantum walks may be useful. 

 

Advanced Track 

Task 4: Let’s make this a little more complex. Now we will add the “chutes” and “ladders”. 

Because the chutes and ladders must be reversible (unitary) to be quantum, each chute and 

ladder will permute states instead. As before, start at square zero, and the game ends when you 

land on square 15. If you land on square “3” you teleport to square “10”. If you land on square 

“13”, you move back to square “9”. And vice versa. 

 

 

 

Figure 4. Board with quantum “chutes and ladders” which permute squares 3 and 10, as well as squares 9 and 13. 

 

Hint 1: For the chutes and ladders, consider a permutation matrix, which “swaps” any two states. 

You may also consider implementing this with “multi-shift” operators, which move multiple spaces. 

To do this you will need to generalize the schematic in Figure 3. 

Hint 2: Remember the product of unitary operators is unitary, so you can compose with your 

solution from Task 3. 

 

Task 5: Discuss the role of measurement in your quantum Chutes and Ladders game. What 

happens if you measure the states between turns? What if you don't measure? What is the 

quantum analog of the “memoryless” nature of the classical game? 

 

Task 6: Now, simulate your game with the Chutes and Ladders “quantum operators”, similar to 

the walk you did in Task 3. Give a comparison of the probability of being on each square after 10 

steps. How does this compare with the quantum game without the “chutes and ladders operator” 

in Task 3?  

https://en.wikipedia.org/wiki/Quantum_walk#Discrete_time

