Alongside passionate support of

Greenberger-Horne-Zeilinger State

Team SSQRT

Problem Statements

Build and run a GHZ state on an Real Quantum Hardware Apply Readout Error Mitigation Implement Quantum Communication Scheme

> Improve GHZ circuit with Pulse-level Calibration Optimize Pulse Parameters

> > Perform Zero-noise Extrapolation Calibrate DRAG pulse and Rotary term

Problem Statements

Build and run a GHZ state on an Real Quantum Hardware Apply Readout Error Mitigation Implement Quantum Communication Scheme

How to make a GHZ state

$$|\Psi\rangle_{GHZ} = \frac{1}{\sqrt{2}} [|0000\rangle + |1111\rangle]$$

Four-qubit GHZ State

How to make a GHZ state

$$|\Psi\rangle_{GHZ} = \frac{1}{\sqrt{2}} [|0000\rangle + |1111\rangle]$$

Four-qubit GHZ State including Two-qubit Repetition Code

W state

$$|\Psi\rangle_W = \frac{1}{2}[|0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle]$$

Readout Error Mitigation

Readout Error Mitigation Scheme using CNOT gate

R. Hicks et. al, "Active Readout Error Mitigation," University of California, Berkeley, 2022.

Bit flip Readout Error Probability

$$q_{eff,2}\approx \frac{\epsilon}{4}+q^2$$

Two-qubit readout error detection

Three-qubit readout error correction

IBM Canberra

Optimal Qubit Layout Algorithm

Optimal Qubit Layout Algorithm

Optimal Qubit Layout Algorithm

Find all possible sets of four connected qubits

Find sets of qubits capable of three CNOT connections

If a qubit is subject to two CNOT possibilities, compare the error probabilities of the two cases

Compare among the finalists for the optimal result

Optimal Qubit Layout Algorithm

Fidelity	Qubit Set
Fidelity [[0.7101795149797284, [0.9211295107767663, [0.9334404942956175, [0.9373700099975102, [0.9478085901001727, [0.9479723635803164, [0.9480160560790225, [0.9502487309366804, [0.9506613203193462, [0.951626455094902, [0.951626455094902, [0.95455368823144, [4] [0.9592733452157228, [0.956720923714140	Qubit Set [15, 18, 21, 23]], [1, 2, 4, 7]], [22, 23, 24, 25]], [19, 22, 24, 25]], [7, 10, 12, 15]], [5, 8, 11, 14]], [7, 10, 12, 13]], [11, 14, 16, 19]], [13, 14, 16, 19]], [12, 13, 14, 15]], [1, 4, 7, 10]], 4, 7, 10, 12]], [14, 16, 19, 22]], [14, 16, 19, 22]],
[0.9667088227140149, [0.9690453653527326, [0.9691544876849959, [0.9705736050821081, [0.9707075355230773, [0.970788798420706, [0.9754935406708112, [0.9758126844009003, [0.9778210520288816, [0.97812598828705, [1] [0.9831852999039822,	<pre>[1, 2, 3, 4]], [12, 13, 14, 16]], [16, 19, 22, 25]], [10, 12, 13, 14]], [8, 11, 14, 16]], [11, 12, 13, 14]], [12, 15, 18, 21]], [10, 12, 15, 18],, [8, 11, 13, 14]], 12, 13, 15, 18]], [3, 5, 8, 11]]]</pre>

Post-Measurement Treatment

Response Matrix

Local Error Approximation

 $R \cong R_1 \otimes R_2 \otimes R_3 \otimes R_4$

Before Correction	After Correction			
Two Best Sets				
0.96481	0.99978			
0.88822	0.99846			
Two Worst Sets				
0.70727	0.99152			
0.54980	0.98054			

Post-Measurement Treatment

Comparison with IBM Runtime Sampler

Active & Passive Readout Error Mitigation iskit

One-Hop Bidirectional Quantum Transportation 😂 Qiskit

Not a Bidirectional Channel!

Two independent path of channel each consuming one GHZ pair

$$(\alpha|0\rangle + \beta|1\rangle) \otimes \frac{|000\rangle + |111\rangle}{\sqrt{2}} = \frac{\alpha|0000\rangle + \alpha|0111\rangle + \beta|1000\rangle + \beta|1111\rangle}{\sqrt{2}}$$

One-Hop Bidirectional Quantum Transportation 😂 Qiskit

One-Hop Bidirectional Quantum Transportation 😂 Qiskit

Procedures

1 Prepare GHZ States

2 Transfer Information to the Next Qubit with GHZ⁻¹ Gate

3 Measurement: Transfer the Entire Information

Procedures

4 Post-Processing

A_1, B_1 :one of I, X, Z, ZX

$A_1, B_1, A_2, B_2, A_3, B_3$: one of I, X, Z, ZX $A_3 A_2 A_1 \psi_A$ A_2 A_3 B_1 A_1^{i} B_3 B_2

 $B_3 B_2 B_1 \psi_B$

$A_1, B_1, A_2, B_2, A_3, B_3$: one of I, X, Z, ZX

$\psi_A = A_1^{-1} A_2^{-1} A_3^{-1} A_3 A_2 A_1 \psi_A$ $\psi_B = B_1^{-1} B_2^{-1} B_3^{-1} B_3 B_2 B_1 \psi_B$

ch = Multinode(0, 25, [([1, 2, 4], [3, 5, 6]), ([7, 8, 10], [9, 11, 12]), ([13, 14, 16], [15, 17, 18]), ([19, 20, 22], [21, 23, 24])], [(2, 3), (4, 5), (1, 0), (6, 7)])

3-Hop Circuit, 27 qubits

Problem Statements

Improve GHZ circuit with Pulse-level Calibration Optimize Pulse Parameters

3-qubit GHZ Gate Abstraction

Calibrated 3-qubit GHZ Gate

X Gate

Amplitude Optimization

SX Gate Optimal Values

In [173]: from qiskit import QuantumCircuit
from qiskit_experiments.library import ProcessTomography
qc = QuantumCircuit(2)
qc.sx(0)

exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend)
exp.analysis.set_options(fitter="cvxpy_linear_lstsq")
exp_data = exp.run().block_for_results()
exp_data.analysis_results("process_fidelity").value

Out[173]: 0.9866742495096311

In [174]: from qiskit import QuantumCircuit
from qiskit_experiments.library import ProcessTomography
qc = QuantumCircuit(2)
qc.sx(1)
exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend)
exp.analysis.set_options(fitter="cvxpy_linear_lstsq")
exp_data = exp.run().block_for_results()
exp_data.analysis_results("process_fidelity").value
Out[174]: 0.9851802814896147

X Gate Optimal Values

ln [175]:	<pre>from qiskit import QuantumCircuit from qiskit_experiments.library import ProcessTomography qc = QuantumCircuit(2) qc.x(0)</pre>	In [176]:	<pre>from qiskit import QuantumCircuit from qiskit_experiments.library import ProcessTomography qc = QuantumCircuit(2) qc.x(1)</pre>
	<pre>exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend) exp.analysis.set_options(fitter="cvxpy_linear_lstsq") exp_data = exp.run().block_for_results() exp_data.analysis_results("process_fidelity").value</pre>		<pre>exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend) exp.analysis.set_options(fitter="cvxpy_linear_lstsq") exp_data = exp.run().block_for_results() exp_data.analysis_results("process_fidelity").value</pre>
0ut[175]:	0.9826479135791473	Out[176]:	0.98157197918988

Cross Resonance Pulse Calibration

Cross Resonance Pulse Calibration

6070 4500 4500 2292 1500 2292 334 334 334 334 7

Optimized Calibration

Poor Calibration

Cross Resonance Pulse Calibration

CNOT Gate Calibration by Optimizing Amplitude

J. Jang, et. al