Alongside passionate support of

Greenberger-Horne-Zeilinger State

Team SSQRT

Problem Statements

Build and run a GHZ state on an Real Quantum Hardware

Apply Readout Error Mitigation

Implement Quantum Communication Scheme

Improve GHZ circuit with Pulse-level Calibration Optimize Pulse Parameters

> Perform Zero-noise Extrapolation Calibrate DRAG pulse and Rotary term

1

Problem Statements

Build and run a GHZ state on an Real Quantum Hardware

Apply Readout Error Mitigation

Implement Quantum Communication Scheme

1

How to make a GHZ state

$$
|\Psi\rangle_{GHZ}=\frac{1}{\sqrt{2}}[|0000\rangle+|1111\rangle]
$$

Four-qubit GHZ State

How to make a GHZ state

$$
|\Psi\rangle_{GHZ} = \frac{1}{\sqrt{2}}[|0000\rangle + |1111\rangle]
$$

Four-qubit GHZ State including Two-qubit Repetition Code

W state

$$
|\Psi\rangle_W=\frac{1}{2}[|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle]
$$

Readout Error Mitigation

Readout Error Mitigation Scheme using CNOT gate

R. Hicks et. al, *"Active Readout Error Mitigation,"* University of California, Berkeley, 2022.

Bit flip Readout Error Probability

$$
q_{eff,2} \approx \frac{\epsilon}{4} + q^2
$$

Two-qubit readout error detection

Three-qubit readout error correction

IBM Canberra

Optimal Qubit Layout Algorithm

Optimal Qubit Layout Algorithm

Optimal Qubit Layout Algorithm

Find all possible sets of four connected qubits

Find sets of qubits capable of three CNOT connections

 $\bm{\nabla}$

 \bigvee

If a qubit is subject to two CNOT possibilities, compare the error probabilities of the two cases

Compare among the finalists for the optimal result

 $\bm{\nabla}$

Optimal Qubit Layout Algorithm

Post-Measurement Treatment

Response Matrix

Local Error Approximation

 $R \cong R_1 \otimes R_2 \otimes R_3 \otimes R_4$

Post-Measurement Treatment

Comparison with IBM Runtime Sampler

Active & Passive Readout Error Mitigation **skit**

One-Hop Bidirectional Quantum Transportation SQiskit

Not a Bidirectional Channel!

Two independent path of channel each consuming one GHZ pair

$$
(\alpha|0\rangle + \beta|1\rangle) \otimes \frac{|000\rangle + |111\rangle}{\sqrt{2}} = \frac{\alpha|0000\rangle + \alpha|0111\rangle + \beta|1000\rangle + \beta|1111\rangle}{\sqrt{2}}
$$

One-Hop Bidirectional Quantum Transportation SQiskit

One-Hop Bidirectional Quantum Transportation SQiskit

Procedures

1 Prepare GHZ States

2 Transfer Information to the Next Qubit with GHZ⁻¹ Gate

Procedures

3 Measurement: Transfer the Entire Information

Procedures

4 Post-Processing

A_1 , B_1 :one of *I* , *X* , *Z* , *ZX*

A_1 , B_1 , A_2 , B_2 , A_3 , B_3 :one of *I* , *X* , *Z* , *ZX* $A_3A_2A_1\psi_A$ A_1 , A_2 , A_3 , A_4 , A_5 , A_1 , A_2 , A_3 , A_1 A_{2} B_3 B_2 A_3 ^{$\dot{}$}

 $B_3B_2B_1\Psi_B$

$A_1, B_1, A_2, B_2, A_3, B_3$: one of I, X, Z, ZX

$\psi_A = A_1^{-1} A_2^{-1} A_3^{-1} A_3 A_2 A_1 \psi_A$ $\psi_B = B_1^{-1} B_2^{-1} B_3^{-1} B_3 B_2 B_1 \psi_B$

ch = Multinode(0, 25,
$$
[(1, 2, 4], [3, 5, 6]),
$$

\n $((7, 8, 10], [9, 11, 12]),$
\n $((13, 14, 16], [15, 17, 18]),$
\n $((19, 20, 22], [21, 23, 24])],$
\n $[(2, 3), (4, 5), (1, 0), (6, 7)])$

3-Hop Circuit, 27 qubits

Problem Statements

Improve GHZ circuit with Pulse-level Calibration Optimize Pulse Parameters

3-qubit GHZ Gate Abstraction

Calibrated 3-qubit GHZ Gate

X Gate

SX Gate Optimal Values

In [173]: from giskit import QuantumCircuit from giskit_experiments.library import ProcessTomography $ac = QuantumCircuit(2)$ $ac.sx(0)$

> $exp = ProcessTomography(qc, physical_qubits=(0, 1)$, backend=backend) exp.analysis.set_options(fitter="cvxpy_linear_lstsq") $exp_data = exp.run(), block-for-result(s()$ exp_data.analysis_results("process_fidelity").value

0ut [173]: 0.9866742495096311

In [174]: from giskit import QuantumCircuit from giskit_experiments.library import ProcessTomography $qc = QuantumCircuit(2)$ $ac.sx(1)$ $exp = ProcessTomography(qc, physical_qubits=(0, 1), backend=backend)$ exp.analysis.set_options(fitter="cvxpy_linear_lstsq") $exp data = exp.run().block for result(s))$ exp_data.analysis_results("process_fidelity").value 0.9851802814896147

X Gate Optimal Values

Cross Resonance Pulse Calibration

Cross Resonance Pulse Calibration

6070 6000 4500 Count 3000 2292 1500 1304 334 Ω 8 $\overline{\mathcal{L}}$ ą ζ

Poor Calibration **Poor Calibration Poor Calibration**

Cross Resonance Pulse Calibration

CNOT Gate Calibration by Optimizing Amplitude

J. Jang, et. al